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1.6. Branching structures 25

a
n=5,δ=25.7◦

F
F→F[+F]F[-F]F

b
n=5,δ=20◦

F
F→F[+F]F[-F][F]

c
n=4,δ=22.5◦

F
F→FF-[-F+F+F]+

[+F-F-F]

d
n=7,δ=20◦

X
X→F[+X]F[-X]+X
F→FF

e
n=7,δ=25.7◦

X
X→F[+X][-X]FX
F→FF

f
n=5,δ=22.5◦

X
X→F-[[X]+X]+F[+FX]-X
F→FF

Figure 1.24: Examples of plant-like structures generated by bracketed OL-
systems. L-systems (a), (b) and (c) are edge-rewriting, while (d), (e) and
(f) are node-rewriting.



The mean transmembrane potentials are driven by incom-

ing post-synaptic potentials (PSPs), which in turn depend
on the firing rates from connecting neurons within and

without the neural mass. The dynamics of hk, where k = e,i
refers to excitatory and inhibitory neurons, respectively,
follow from

sk
o
ot
hk x~; tð Þ ¼ hrk $ hk x~; tð Þ þ Rl¼e;iWlk hk x~; tð Þ½ ' ( Ilk x~; tð Þ;

ð1Þ

Here parameters sk and hrk describe the characteristic decay
times and resting potentials, respectively. The x~ vector

corresponds here to the three-dimensional spatial position

of a vertex on the cortical sheet, i.e., we could instead label
the state variables spatially by their vertex numbers. The Ilk
state variables describe the somatic impact of incoming

postsynaptic potentials (with, e.g., Iei referring to excitatory
PSPs on an inhibitory population). The Wlk take into

account that the conductance of voltage-gated ion channels

depends on the current membrane potential; for instance, if
neurons are in a depolarized state, then the PSPs caused by

additional excitatory pre-synaptic impulses are reduced.

Wlk takes the following form

Wlk hk x~; tð Þ½ ' ¼ heqlk $ hk x~; tð Þ
heqlk $ hrk
!! !! ; ð2Þ

where heqlk is the Nernst equilibrium potential, i.e., the
potential at which the impact of PSPs changes sign. Since

heqek [ hre but heqlk\hri ; these Nernst factors are normalized

so that the PSP impact at soma Ilk, which is a positive
function itself, is weighted with ?1 and -1 for excitatory

and inhibitory inputs, respectively, if the target neuron is at

rest.
The dynamics of Ilk, and its dependence on incoming

firing rates Flk, follows from

Here a local pre-synaptic spike input Flk x~; tð Þ ¼ d tð Þ;
where d(t) is the Dirac delta, leads to a PSP impact at the
soma with a biologically plausible bi-exponential form

Ilk x~; tð Þ ¼ eclkdlkClk~clk ( e$clk t$e$~clk t

~clk$clk
(H tð Þ; where H(t) is the

Heaviside step function. The parameters dlk and elk control
the rise and decay time of this impulse response: the

maximum amplitude is Ilk x~; t ¼ dlkð Þ ¼ Clk; and the

shortest decay time Ilk x~; t ¼ 3:1462 ( dlkð Þ ¼ Clk=e occurs

for elk ? 0, a limit in which the PSP impulse response

acquires the simpler ‘‘alpha form’’ Ilk x~; tð Þ ¼ eClk
dlk

( te$t=dlk (
H tð Þ: For our simulations here we use the simple elk = 0

case, hence clk ¼ ~clk ¼ 1=dlk with rise times dek ¼ 3:33 ms

and dik ¼ 15:35 ms (Bojak et al. 2004).
The actual incoming firing rate Flk is composed of three

parts: pek and Uek are, respectively, the excitatory firing

rates from subcortical and cortico-cortical inputs. Note that
Uik does not occur because inhibitory long-range fibers are

basically absent in cortex (Braitenberg and Schüz 1998);
for rare exceptions see however (Clancy et al. 2009). We

assume here as well that there are no extra-cortical inhib-

itory inputs pik to cortex. Nb
lkSl hl x~; tð Þ½ ' is the incoming

firing rate from within the local neural mass itself. It

depends on the number of local connections Nlk
b and the

average mean transmembrane potential hl, which deter-
mines the local firing rate. Sl is a sigmoidal squashing

function

Sl hl x~; tð Þ½ ' ¼ Smax
l ( 1þ exp $

ffiffiffi
2

p hl x~; tð Þ $ ll
rl

# $% &$1

:

ð4Þ

It is an approximation to an error function and corresponds

to the assumption of a Gaussian distribution of firing
thresholds in the neural mass with mean ll and variance rl

2.

Fee and Fek also drive the hemodynamics underlying fMRI

BOLD prediction, since they are related to glutamate
release.

The initial conditions for this system of equations are

taken from a fixed point solution, for which all derivatives
of the six system variables are assumed to be zero:

ohk=ot ¼ oIlk=ot ¼ 0; leaving them constant in time

hk x~; tð Þ ¼ h)k x~ð Þ and Ikl x~; tð Þ ¼ I)kl x~ð Þ:We will indicate fixed
point solutions by a star in the following. Note that the

program allows system parameters like clk to vary from

vertex to vertex, thus more accurately it is clk x~ð Þ: Hence
h)k x~ð Þ and Ikl x~ð Þ can depend on spatial (vertex) position. If
one makes some suitable assumptions about plk and Ulk;
then Eqs. 1–4 reduce to just two equations in h)e xð Þ and

h)i x~ð Þ for the fixed point. For our initial state calculation,
we set p)lk x~; tð Þ ¼ !plk !xð Þ; i.e., the cortical vertices are

assumed to get constant subcortical input, which however

can vary spatially. Further, U)
ek x~; tð Þ ¼ Na

ekSe h)e x~ð Þ
' (

; where

o
ot

þ clk

# $
o
ot

þ ~clk

# $
Ilk x~; tð Þ ¼ eclkdlkClk~clk ( Flk x~; tð Þ; clk *

elk
eelk $ 1

1

dlk
;

Flk x~; tð Þ ¼ Nb
lkSl hl x~; tð Þ½ ' þ

pek x~; tð Þ þ Uek x~; tð Þ for lk ¼ ee; ei

0 for lk ¼ ie; ii

(

; ~clk * eelkclk:
ð3Þ
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or
“What do I want for lunch?”
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Study nature Build mathematical models Observe nature, according

to model(prove theorems,
build algorithms)

(Implement algorithms,
gather data)

How powerful?

Lemma 4.3 Let ⌅ = (T, ⇥, n1, n2) be a TGR system and let L ⇥ ⇥⇥ with ⌅
useful on L. Then

⌅⇥(L) = L(⇥)
� .

Proof. Let n = n1 + n2.
“⇥” To show ⌅⇥(L) ⇥ L(⇥)

� it su⇤ces to prove, by induction on i, that

⌅i(L) ⇥ L(i)
� for every i ⌅ 0. This is obvious for i = 0 (since both sets

equal L). Now assume that it holds for m ⌅ 0, i.e., ⌅m(L) ⇥ L(m)
� , and let

w ⇧ ⌅m+1(L)�⌅m(L). Thus, (x, y) ⌥t w for some x, y ⇧ ⌅m(L) ⇥ L(m)
� , t ⇧ T ,

by the inductive hypothesis. Thus, w = u�⇥⇤v, x = u�⇥d, y = e⇥⇤v,�, ⇤ ⇧
⇥⇤n1 , ⇥ ⇧ ⇥n2 , u, v, d, e ⇧ ⇥⇥, �⇥⇤ = t. So, if a1 · · · an are the first n letters
of �⇥ and b1 · · · bn are the last n letters of ⇥⇤, then u ⇧ Pa1,...,an(L(m)

� ) and

v ⇧ Sb1,...,bn(L(m)
� ). Hence, w = utv ⇧ L(m+1)

� . This proves that ⌅m+1(L) ⇥
L(m+1)

� .
“⇤” To show L(⇥)

� ⇥ ⌅⇥(L), we prove by induction on i that L(i)
� ⇥

⌅⇥(L). This is, again, obvious for i = 0. Assuming that it holds for

m ⌅ 0, let w ⇧ L(m+1)
� � L(m)

� . Thus, w = utv, where t ⇧ T with �p
n(t) =

a1 · · · an, �s
n(t) = b1 · · · bn and u ⇧ Pa1,...,an(L(m)

� ) ⇥ Pa1,...,an(⌅⇥(L)), v ⇧
Sb1,...,bn(L(m)

� ) ⇥ Sb1,...,bn(⌅⇥(L)). By the inductive hypothesis and by Lemma

??, we see that utv ⇧ ⌅⇥(L). This proves that L(m+1)
� ⇥ ⌅⇥(L).

We use this to prove one of the main results of the paper. Indeed, we show
that every full AFL is closed under iterated template-guided recombination
with useful templates from the same full AFL. The construction provides an
interesting characterization as well.

Theorem 4.1 Let L be a full AFL, ⌅ = (T, ⇥, n1, n2) a TGR system and let
L, T ⇧ L, L ⇥ ⇥⇥, and assume that ⌅ is useful on L. Then ⌅⇥(L) ⇧ L.

Proof. Let n = n1 + n2 and V$ = {$L,p, $L,i, $L,s, $T , $T,s, $T,p, $T,i}, all
new symbols. Also, for each x ⇧ ⇥⇥,we define x́ = {⇥n}�1{x} and x̀ =
{x}{⇥n}�1.

Let L1 = ($L,pprefn(L) ⌃ $L,iinfn(L) ⌃ $L,ssufn(L) ⌃ $T T ⌃ $T,ssufn(T ) ⌃
$T,pprefn(T ) ⌃ $T,iinfn(T ))+.

It is clear that L1 ⇧ L since every full AFL is closed under concatenation
with a new symbol, union, prefix, su⇤x, infix, + and intersection with regular
languages.

9

• If our TGR system is useful on L, then its 
computational power is very limited.

• Bad news for folks wanting to do in vivo 
computing with ciliates

• Good news for realism... (why should 
evolution favour universality?)
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2. Preliminaries

We refer to [16] for language theory preliminaries. Let ! be a finite alphabet.We denote,
by !∗ and !+, the sets of words and non-empty words, respectively, over ! and the empty
word by ". A language L is any subset of !∗. Let x, y ∈ !∗. We let |x| denote the length
of x and let alph(x) denote the set of letters of ! occurring in x. For k ∈ N, let !!k =
{w | w ∈ !∗, |w|!k}. Let L, R ⊆ !∗. We denote by L−1R = {z ∈ !∗ | x = yz for some

x ∈ R, y ∈ L} and RL−1 = {z ∈ !∗ | x = zy for some x ∈ R, y ∈ L}.
We denote the families of finite languages by FIN, regular languages by REG, "-free

regular languages by REG0 and recursively enumerable languages by RE.

A trio is a language family (which by definition contains some non-empty language)

closed under "-free homomorphism, inverse homomorphism and intersection with regular
sets. It is known that every trio is closed under "-free a-transductions. 3 A full AFL is a

language family closed under homomorphism, inverse homomorphism, intersection with

regular sets, union, concatenation and ∗. We refer to [1,5] for the theory of AFLs.

3. Template-guided recombination

We begin by defining an abstract formal version of the template-guided recombination

operation described above.

Definition 1. A template-guided recombination system (or TGR system) is a four tuple

# = (T ,!, n1, n2) where ! is a finite alphabet, T ⊆ !∗ is the template language, n1 ∈ N
is the minimum MDS length and n2 ∈ N is the minimum pointer length.

For a TGR system # = (T ,!, n1, n2) and a language L ⊆ !∗, we define #(L) = {w ∈
!∗ | (x, y)!tw for some x, y ∈ L, t ∈ T } where (x, y)!tw if and only if x = u$%d, y =
e%&v, t = $%&, w = u$%&v, u, v, d, e ∈ !∗, $, & ∈ !!n1 ,% ∈ !!n2 . We say that L is the

base or initial language.

We then write "(L1, L2, n1, n2) = {#(L) | L ∈ L1, # = (T ,!, n1, n2), T ∈ L2} and
"(L1, L2) = {"(L1, L2, n1, n2) | n1, n2 ∈ N}.

The next proposition states that we can always assume without loss of generality that the

% subword of a template is of the minimum length, n2.

Proposition 2. Let # = (T ,!, n1, n2) be a TGR system and let x, y ∈ !∗ and t ∈ T . Then

(x, y)!tw if and only if x = u$%d, y = e%&v, t = $%&, w = u$%&v, u, v, d, e ∈ !∗, $, & ∈
!!n1 ,% ∈ !n2 .

Proof. Suppose (x, y)!tw. Then w = u$%&v where x = u$%d, y = e%&v, $%& ∈
T , |$|, |&|!n1, |%|!n2. Thus % = lz, z ∈ !n2 , l ∈ !∗. Indeed, x = u$′zd where $′ = $l

3 An a-transducer is also referred to as a rational transducer.
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x = u�⇥d, y = e⇥⇤v, t = �⇥⇤, w = u�⇥⇤v

1
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word by ". A language L is any subset of !∗. Let x, y ∈ !∗. We let |x| denote the length
of x and let alph(x) denote the set of letters of ! occurring in x. For k ∈ N, let !!k =
{w | w ∈ !∗, |w|!k}. Let L, R ⊆ !∗. We denote by L−1R = {z ∈ !∗ | x = yz for some

x ∈ R, y ∈ L} and RL−1 = {z ∈ !∗ | x = zy for some x ∈ R, y ∈ L}.
We denote the families of finite languages by FIN, regular languages by REG, "-free

regular languages by REG0 and recursively enumerable languages by RE.

A trio is a language family (which by definition contains some non-empty language)

closed under "-free homomorphism, inverse homomorphism and intersection with regular
sets. It is known that every trio is closed under "-free a-transductions. 3 A full AFL is a

language family closed under homomorphism, inverse homomorphism, intersection with

regular sets, union, concatenation and ∗. We refer to [1,5] for the theory of AFLs.

3. Template-guided recombination

We begin by defining an abstract formal version of the template-guided recombination

operation described above.

Definition 1. A template-guided recombination system (or TGR system) is a four tuple

# = (T ,!, n1, n2) where ! is a finite alphabet, T ⊆ !∗ is the template language, n1 ∈ N
is the minimum MDS length and n2 ∈ N is the minimum pointer length.

For a TGR system # = (T ,!, n1, n2) and a language L ⊆ !∗, we define #(L) = {w ∈
!∗ | (x, y)!tw for some x, y ∈ L, t ∈ T } where (x, y)!tw if and only if x = u$%d, y =
e%&v, t = $%&, w = u$%&v, u, v, d, e ∈ !∗, $, & ∈ !!n1 ,% ∈ !!n2 . We say that L is the

base or initial language.

We then write "(L1, L2, n1, n2) = {#(L) | L ∈ L1, # = (T ,!, n1, n2), T ∈ L2} and
"(L1, L2) = {"(L1, L2, n1, n2) | n1, n2 ∈ N}.

The next proposition states that we can always assume without loss of generality that the

% subword of a template is of the minimum length, n2.

Proposition 2. Let # = (T ,!, n1, n2) be a TGR system and let x, y ∈ !∗ and t ∈ T . Then

(x, y)!tw if and only if x = u$%d, y = e%&v, t = $%&, w = u$%&v, u, v, d, e ∈ !∗, $, & ∈
!!n1 ,% ∈ !n2 .

Proof. Suppose (x, y)!tw. Then w = u$%&v where x = u$%d, y = e%&v, $%& ∈
T , |$|, |&|!n1, |%|!n2. Thus % = lz, z ∈ !n2 , l ∈ !∗. Indeed, x = u$′zd where $′ = $l

3 An a-transducer is also referred to as a rational transducer.
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Figure 4: Descrambling of unclassified Uroleptus gene
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Resources



Natural computing
Computability theory
Complexity theory
Information theory

Combinatorics
(low-d) Topology
Applied statistics

Functional programming
High-performance computing

GPU & FPGA
(basic) molecular biology

Electron microscopy
fMRI

EEG & MEG



Some funded Applications

Neonatal Neurological
Assessment
(with R. Cusack)



Real-time fMRI graphs with FPGAs

+ +

Fractionating phenotype from genotype, fMRI and 
behavioural data.
(with B. Morton)


