The Daley lab

Department of Computer Science
Department of Biology
The Brain and Mind Institute
Western University

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f},$$

$$\tau_k \frac{\partial}{\partial t} h_k(\vec{x}, t) = h_k^r - h_k(\vec{x}, t) + \sum_{l=e,i} \Psi_{lk} [h_k(\vec{x}, t)] \cdot I_{lk}(\vec{x}, t)$$

"What do I want for lunch?"

What we do

Study nature

Build mathematical models

Observe nature, according

(Implement algorithms,

gather data)

Micronuclear genome (Germline)

Theorem 4.1 Let \mathcal{L} be a full AFL, $\varrho = (T, \Sigma, n_1, n_2)$ a TGR system and let $L, T \in \mathcal{L}, L \subseteq \Sigma^*$, and assume that ϱ is useful on L. Then $\varrho^*(L) \in \mathcal{L}$.

Resources

Natural computing
Computability theory
Complexity theory
Information theory
Combinatorics
(low-d) Topology
Applied statistics

Functional programming
High-performance computing
GPU & FPGA
(basic) molecular biology
Electron microscopy
fMRI
EEG & MEG

Some funded Applications

Neonatal Neurological

Assessment
(with R. Cusack)

Real-time fMRI graphs with FPGAs

