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7.3 From Larmor to Fourier via gradients
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The effect of gradients
Mathematically the three orthogonal spatial gradients of Bz are defined as

G x ! Gy ! G z !

When a gradient (e.g. Gx) is applied the total field in the z direction experienced by nuclei will be dependent upon
the position in space, e.g.

B(x)! B0 " x · G x

When a gradient is applied the Larmor frequency will depend upon the total z component of the magnetic field
and thus becomes spatially dependent, e.g. for the x gradient.

f (x)!#–(B0 " x · G x)

where we are using #–!42 MHz T$1.
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Figure 7.2 Effect of field gradient on nuclei. (a) B0 only, all nuclei precess at the same frequency. (b) B0 plus gradient Gx –

precession frequency now depends upon position.
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t h at pro d uce d by a m usical i nstr u m e n t, is a n exa m ple of
a o n e d i m e nsio n al w avefor m  a n d w h e n Fo urier tra ns-

for m e d gives a o n e-d i m e nsio n al sp ectr u m . In M R we

use t w o or t hree-d i m e nsio n al Fo urier tra nsfor ms.
Varia bles w h ich relate to each ot h er i n t h eir resp ective

d o m ai ns are calle d Fo urier tra nsfor m  p airs. Exa m ples
are sh ow n i n figure 7.5. O n e of t h e key feat ures of t h e

Fo urier tra nsfor m  is t h at ‘less is m ore’: if a sh a p e is sm all

i n o n e d o m ai n , its tra nsfor m  w ill b e large i n t h e ot h er.

7.4 Something to get excited about: the
image slice

Slice selectio n or selective excitatio n is t h e process
w h ere by M R sign als are restricte d to a t w o-d i m e nsio n al

pla n e or sla b w it h i n t h e p atie n t. T h e p ositio n , w i dt h

a n d orie n tatio n of t h e slice ca n all b e co n trolle d by t h e

o p erator.

7.4.1 Selective excitation

In selective excitatio n we a p ply a sp ecially d esign e d R F

excitatio n p ulse at t h e sa m e ti m e as a gra d ie n t (t h e

7.4 Something to get excited about: the image slice
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Figure 7.3 Effect of gradient on MR signal (transverse

magnetization). Signal originating from different positions

along the y-gradient axis will have a position dependent

phase change. These are shown as clock-face diagrams in

the upper part of the figure. It is usual in the MRI literature

to “collapse” or superimpose these all on the same xyz

axes as in the lower portion.
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Figure 7.4 Rephasing of signal by a bipolar gradient to form a gradient echo.
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including optical methods (Dunn et al., 2005; Grant et al., 2009; 
Roche-Labarbe et al., 2010) and tissue oxygenation measurements 
in animal studies (Caesar et al., 2008; Piilgaard and Lauritzen, 2009; 
Thomsen et al., 2009), also exploit the change in blood or tissue 
oxygenation due to the mismatch of CBF and CMRO

2
 changes as 

a biomarker of altered neural activity.
Because oxygenation changes depend on the relative changes in 

CBF and CMRO
2
, a quantitative interpretation of BOLD signals, 

and also other functional neuroimaging signals related to blood 
or tissue oxygenation, is fundamentally limited until we better 
understand brain oxygen metabolism and how it is related to blood 
flow. While there has been a large research effort focused on the 
links between neural activity and blood flow, our understanding of 
oxygen metabolism changes is limited by the intrinsic difficulty of 
measuring CMRO

2
. However, the complexity of oxygenation signals 

also has a positive side: the fact that oxygenation signals are sensitive 
to both CBF and CMRO

2
 changes offers the possibility of estimat-

ing CMRO
2
 changes when these measurements are combined with 

additional measurements of CBF. In fact, a quantitative interpreta-
tion of oxygenation-based signals offers the best hope we have for 
measuring dynamic changes in CMRO

2
 (Herman et al., 2009). This 

is intrinsically a multimodal imaging approach, and a key required 
element to make it work is a theoretical framework that accurately 
relates our measured signals to the underlying physiology.

INTRODUCTION
A brief neural stimulus produces a rapid and robust increase of 
cerebral blood flow (CBF), as illustrated in Figure 1A. Although this 
phenomenon is the basis for most current functional neuroimaging 
methods, it is still not clear what physiological function this serves. 
The CBF response is quite strong, with the fractional CBF change 
typically 2–4 times larger than the associated fractional change 
in the cerebral metabolic rate of oxygen (CMRO

2
). A useful way of 

describing this effect is that the oxygen extraction fraction (OEF) – 
the fraction of delivered oxygen that is extracted from the blood 
and metabolized – decreases with increased neural activity. This 
counterintuitive result, first reported by Fox and Raichle (1986), 
is surprising because at rest CBF and CMRO

2
 appear to be tightly 

coupled, with a relatively uniform OEF across the brain despite a 
wide regional variation of blood flow (Gusnard and Raichle, 2001). 
Fortunately for the field of functional neuroimaging, the increase of 
local blood oxygenation with activation produces a small increase 
of the signal measured with functional magnetic resonance imaging 
(fMRI) because of the magnetic properties of deoxyhemoglobin, 
with higher deoxyhemoglobin levels tending to reduce the MR 
signal. Decreased deoxyhemoglobin due to the drop in OEF with 
activation then leads to an increase of the MR signal, the blood 
oxygenation level dependent (BOLD) response (Kwong et al., 1992; 
Ogawa et al., 1992; Buxton, 2009) (Figure 1B). Other techniques, 
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Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar
SW, Buckner RL. Intrinsic functional connectivity as a tool for
human connectomics: theory, properties, and optimization. J Neu-
rophysiol 103: 297–321, 2010. First published November 4, 2009;
doi:10.1152/jn.00783.2009. Resting state functional connectivity
MRI (fcMRI) is widely used to investigate brain networks that exhibit
correlated fluctuations. While fcMRI does not provide direct measure-
ment of anatomic connectivity, accumulating evidence suggests it is
sufficiently constrained by anatomy to allow the architecture of dis-
tinct brain systems to be characterized. fcMRI is particularly useful
for characterizing large-scale systems that span distributed areas (e.g.,
polysynaptic cortical pathways, cerebro-cerebellar circuits, cortical-
thalamic circuits) and has complementary strengths when contrasted
with the other major tool available for human connectomics—high
angular resolution diffusion imaging (HARDI). We review what is
known about fcMRI and then explore fcMRI data reliability, effects of
preprocessing, analysis procedures, and effects of different acquisition
parameters across six studies (n ! 98) to provide recommendations
for optimization. Run length (2–12 min), run structure (1 12-min run
or 2 6-min runs), temporal resolution (2.5 or 5.0 s), spatial resolution
(2 or 3 mm), and the task (fixation, eyes closed rest, eyes open rest,
continuous word-classification) were varied. Results revealed moder-
ate to high test-retest reliability. Run structure, temporal resolution,
and spatial resolution minimally influenced fcMRI results while fix-
ation and eyes open rest yielded stronger correlations as contrasted to
other task conditions. Commonly used preprocessing steps involving
regression of nuisance signals minimized nonspecific (noise) correla-
tions including those associated with respiration. The most surprising
finding was that estimates of correlation strengths stabilized with
acquisition times as brief as 5 min. The brevity and robustness of
fcMRI positions it as a powerful tool for large-scale explorations of
genetic influences on brain architecture. We conclude by discussing
the strengths and limitations of fcMRI and how it can be combined
with HARDI techniques to support the emerging field of human
connectomics.

I N T R O D U C T I O N

The human brain is organized into parallel, interacting
systems of anatomically connected areas. Understanding the
functions of these systems and differences associated with
atypical development and degenerative processes requires
methods to measure connectivity and how it varies from one
person to the next. Because of these needs, there has been great

interest in developing techniques to measure connectivity in
the human brain and to link the measured connectivity patterns
to information about cytoarchitectonic boundaries and func-
tional response properties. The present paper focuses on one
such technique—functional connectivity MRI (fcMRI)—that
provides indirect information about structural connectivity pat-
terns that define brain systems.1

Expanding on related approaches (e.g., Friston 1994; Friston
et al. 1993; Gochin et al. 1991; Horwitz et al. 1984; McIntosh
1999; Nunez et al. 1997), fcMRI is based on the observation
that brain regions show slow, spontaneous fluctuations when
measured using blood-oxygenation-level-dependent (BOLD)
imaging methods (Biswal et al. 1995). Regions within anatom-
ically connected brain systems, such as the motor and visual
systems, are strongly and selectively correlated, suggesting the
potential to use such correlations to infer the anatomic connec-
tivity of brain systems. The present paper reviews the theory
and methods of fcMRI (including its limitations) and then
presents the results of six novel empirical studies that charac-
terize parameters for its optimal use.

Functional connectivity MRI and its relation to
alternative techniques

Until recently, the majority of information about the ana-
tomic connectivity of the human brain came from studies of
non-human primates using invasive tracing techniques (Felle-
man and Van Essen 1991; Jones and Powell 1970; Mesulam
2000; Ungerleider and Haxby 1994) and inferences from hu-
man brain lesions (e.g., Geschwind 1965). Postmortem tracing
techniques in humans are feasible but have met with limited
success because they are only able to trace connections span-
ning short distances (e.g., Burkhalter et al. 1993). For these

Address for reprint requests and other correspondence: R. L. Buckner,
Harvard University—Center for Brain Science, Northwest Bldg., Rm. 280.05,
52 Oxford St., Cambridge, MA 02138 (E-mail: randy_buckner@harvard.edu).

1 Functional connectivity is operationally defined as temporally correlated
remote neurophysiological events (Friston 1994; see also Horwitz 2003) and
does not explicitly require that one event is influencing the other (e.g., 2
physiological events can be correlated because they are triggered by common
stimulus or neuromodulatory events). The term effective connectivity is often
evoked when the correlated events can be demonstrated to arise from a direct
influence. While we adopt the agnostic term functional connectivity MRI
(fcMRI) in this paper, accumulating evidence suggests that intrinsic activity
correlations observed by fcMRI analysis are constrained by anatomic connec-
tivity and may be a viable tool for making inferences about stable organiza-
tional properties of neural systems. fcMRI acquired at rest is also sometimes
referred to as resting state fMRI (R-fcMRI) or discussed in terms of the
networks it identifies—resting state networks (RSNs).

J Neurophysiol 103: 297–321, 2010.
First published November 4, 2009; doi:10.1152/jn.00783.2009.
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- Regress out WM/CSF signal

- BPF 0.009 to 0.1 Hz

- Extract only grey matter voxels.



BOLD Timeseries
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How much does
this timeseries

“look like”
this timeseries?



Pearson Correlation
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Spectral Coherence
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Pearson ~3 min
2.2 GHz Core 
i7 (OpenMP/

SIMD)

Coherence ~50 min
2.2 GHz Core 
i7 (OpenMP/

SIMD)

MI ~60 min 10 x 2.2 Ghz 
Opteron (MPI)

Time to process 1 typical subject (3T).
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0.5

0.5

Compare the voxel
time series.

If the result is above
some threshold,

add an edge to graph.



Typical Graph sizes

3T 7T

|V|
15,000

~
30,000

50,000
~

100,000

|E|
300,000

~
3,000,000

3,000,000
~

300,000,000



Computing Problem
Our graphs all end up being

small world graphs. 

Guarantee of non-locality of memory accesses.



Fortunately...



Some pretty pictures
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Resting State



Pagerank





Modules in PFC



Graph transformations



The network is the computation.



Dynamics of Graphs
(with Andrew Kope, Casey Wood and Mehrsa Golestaneh)



MEG/EEG
Trade spatial resolution for

temporal resolution.

Trade 0.5 Hz for 500 Hz



vertex = sensor, edge = thresholded PLI

1800ms trial, 800ms windows, 25ms step
Task: Read a word or listen to a word EEG

TEMPORAL TOPOLOGICAL TRANSFORMATION IN DYNAMIC
MEG-DERIVED GRAPH SEQUENCES

A. KOPE, M. DALEY, THE UNIVERSITY OF WESTERN ONTARIO, CANADA, {AKOPE2,MDALEY2}@UWO.CA

CONTRIBUTION
We present a framework for analyzing the

topological evolution of graphs derived from
MEG data with these new approaches:

1. Inferring graph sequences using sparse ma-
trix separation and stabilizing heuristics.

2. Thresholding graph sequences using the
theory of random matrices.

3. Abstract, motif-based, analysis.

SPARSE SEPARATION
For a given matrix M , we decompose M =

L + S via the augmented Lagrangian alternat-
ing direction method, where L is a matrix of low
ranka and S is a sparse matrix.

= +

Physiologically, we justify this approach by hy-
pothesizing that there are more MEG channels
than there are truly independent signals of inter-
est at a given point in time.

aHere, rank is automatically estimated by rank-revealing
QR factorization

THANKS
We thank the Natural Sciences and Engineer-

ing Research Council of Canada for funding.

STEP 1: BUILDING GRAPH SEQUENCES
We divide the set of all (preprocessed and bandpass-filtered) MEG gradiometer signals into (possibly

overlapping) temporal windows and for each window we compute

1. A matrix of the phase locking index[1]:
��� 1
N

�N−1
k=0 sign(φxi(k)− φxj (k))

���a for all channel pairs (i, j).

2. A sparse separation of this matrix into the sum of a low(er)-rank matrix and a sparse noise matrix.

The noise matrices are discarded and the resulting sequence of low-rank matrices is then subjected to
heuristic edge stabilization, in which matrix entries are “smoothed” across the temporal dimension. This
might be a simple low-pass filter or an arbitrarily complex scoring function. After smoothing, each
matrix is thresholded into a sequence of graph adjacency matrices using an approach based on random
matrix theory.

aφx(t) = arctan x̄(t)
x(t) is the instantaneous phase of timeseries x(t) and x̄(t) denotes the Hilbert transform of x(t)

STEP 2: ANALYZING GRAPH SEQUENCES
Given this sequence of graphs, we can now compute sequences of per-node(first figure), and whole-

graph(second figure)a, metrics to quantify the change in graph topology over time, under various ex-
perimental conditions. Statistical significance can be quantified by comparing to sequences of graphs
subjected to degree-preserving edge permutation(third figure). Arrows denote task onset; task involved
either reading a word or listening to a spoken word.

At a higher level of abstraction – removed completely from spatial embedding – we can quantify
more general topological properties of the graphs, such as counts of subgraph motifs (figure below) and
the number of nonisomorphic motifs of a given order.

Motif evolution during Listen task Motif evolution during Read task

Motifs

aThis is similar to the work of Nicol et. al.[2], though we compare timeseries, and build graphs, in a different manner

REFERENCES
[1] Stam, C. J., Nolte, G., and Daffertshofer, A. Phase lag

index: Assessment of functional connectivity from multi
channel EEG and MEG with diminished bias from com-
mon sources. Human Brain Mapping, 28(11):1178–1193.

[2] Nicol, R. M., Chapman, S. C., Vértes, P. E., Nathan, P. J.,
Smith, M. L., Shtyrov, Y., and Bullmore, E. T. Fast recon-
figuration of high-frequency brain networks in response
to surprising changes in auditory input. Journal of Neuro-

physiology, 107(5):1421–1430.

THRESHOLDING
We compute the set of eigenvalues for all ma-

trices in a sequence and compensate for bias us-
ing standard spectral unfolding procedures. We
next observe the spacings of the unfolded eigen-
values. Random matrix theory demonstrates that
such spacings in a matrix dominated by noise will
follow Gaussian Orthogonal Ensemble statistics;
in a highly-modular matrix, they will follow Pois-
son statistics. The correct threshold is the one
which makes the matrix “Poisson enough” for us
(determined by Anderson-Darling goodness-of-
fit test to an exponential distribution).

THREATS
• Network-estimation approach is crude.

Existing, more elegant, approaches place
constraints on the statistics of the data
sources (e.g., GLASSO-like) and/or require
convex likelihood functions (e.g., TESLA).
Our approach operates at a higher level of
abstraction and permits the use of arbitrary
timeseries comparison metrics.

• Too abstract. Things which cannot be seen
“in the small” are sometimes visible ab-
stractly (e.g., changes in global topology).
Concerns regarding whether one abstracts
noise, rather than signal, can be addressed
by searching for concordant results while
varying every stage of the pipeline (e.g., dif-
ferent time series metrics).

FUTURE DIRECTIONS
• Validation with synthetic data.

• Cross-validation on real data, looking for
consistent topology with varying pipelines.

• Optimization of edge stabilization heuristic
function.

• Parameter optimization for window
size/width and choice of graph metrics.

• Analysis of higher-order motifs and tabula-
tion of common motif transformations.



Inferring Dynamic 
Graphs

Smarter people have done this with GLASSO...

... or approaches like TESLA

Works great... if you only care about covariance

Works great... if your likelihood function is convex

Severely limits the time series 
comparison metrics you can use!
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Step 2: Sparse matrix separation

Step 1: Build raw sequence of metric matrices

So... we’re doing it the dumb way

Low rank Sparse

Keep this part



Step 3: Heuristic edge stabilization (temporal smoothing)

Step 4: Threshold stabilized matrices with RMT

Step 5: Convert matrices to a sequence of graphs
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Per-vertex eigenvector centrality
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Rewired

Real graphs vs. rewired graphs

Effect or artifact?

MEG
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Per-vertex evolution of MEG data
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Full circle:
Back to TCS!

• Gather statistics on graph transformations.

•What are the properties of a 
stochastic graph rewriting system 
with these empirically-derived 
rules?



Applications

Neonatal Neurological
Assessment
(with R. Cusack)

Coma Outcome
Prediction
(with A. Owen)



Real-time fMRI graphs with FPGAs

+ +

Fractionating phenotype from genotype, fMRI and 
behavioural data.
(with B. Morton)
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